本章小结

25.3. 本章小结#

科学可视化致力于揭示物理世界的结构与动态,其数据天然具有空间属性(如CT体素、流体粒子)。 科学可视化强调三维空间的精准表达(如体绘制中的光线投射算法)和物理规律的视觉隐喻(如涡旋的流面提取)。

从数据角度看,需攻克多尺度(纳米至天文)、多物理场(温度-流速耦合)的高效融合;从任务看,需支撑科学家验证仿真模型、定位异常特征(如肿瘤边界);从用户看,需平衡领域专有符号系统(如等值面)与交互直觉性。

科学可视化的类型与方法与数据特性紧密绑定。标量场依赖颜色映射与等高线绘制,矢量场通过流线与纹理揭示动态模式,张量场借助超流形与图元解析各向异性,表面与体数据则分别聚焦几何与体渲染。 如何选择合适的可视化工具需结合科学问题与数据规模,在未来,科学可视化的趋势或许将向着自动化、实时化与跨模态融合演进。

25.3.1. 习题#

25.3.2. 参考文献#

[CL93]

Brian Cabral and Leith (Casey) Leedom. Imaging Vector Fields Using Line Integral Convolution. Association for Computing Machinery, New York, NY, USA, 1 edition, 1993.

[CNZ+22]

Xuwen Chen, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. Simulation and optimization of magnetoelastic thin shells. ACM Trans. Graph., 2022.

[CZ21]

Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM Trans. Graph., 2021.

[dLvL98]

Wim de Leeuw and Robert van Liere. Comparing lic and spot noise. In Proceedings of the Conference on Visualization '98, VIS '98, 359–365. Washington, DC, USA, 1998. IEEE Computer Society Press.

[Kin04]

Gordon Kindlmann. Superquadric tensor glyphs. In Proceedings of the Sixth Joint Eurographics - IEEE TCVG Conference on Visualization, VISSYM'04, 147–154. Goslar, DEU, 2004. Eurographics Association.

[LC98]

William E Lorensen and Harvey E Cline. Marching cubes: a high resolution 3d surface construction algorithm. In Seminal graphics: pioneering efforts that shaped the field, pages 347–353. 1998.

[MSCG24]

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. Walkin’ robin: walk on stars with robin boundary conditions. ACM Trans. Graph., July 2024.

[PGW24]

Zherong Pan, Xifeng Gao, and Kui Wu. Learning reduced fluid dynamics. In AAAI Conference on Artificial Intelligence. 2024.

[PW13]

David HF Pilar and Colin Ware. Representing flow patterns by using streamlines with glyphs. IEEE transactions on visualization and computer graphics, 19(8):1331–1341, 2013.

[Sab02]

Markus Sabadello. Enhancing spot noise visualizations of 2d and 3d vector fields. In 2002.

[SP04]

Wei Shen and Alex Pang. Anisotropy based seeding for hyperstreamline. In Proceedings of IASTED International Conference on Computer Graphics and Imaging (CGIM’04). 2004.

[SEHWigstrom02]

Andreas Sigfridsson, Tino Ebbers, Einar Heiberg, and Lars Wigström. Tensor field visualisation using adaptive filtering of noise fields combined with glyph rendering. In Proceedings of the Conference on Visualization '02, VIS '02, 371–378. USA, 2002. IEEE Computer Society.

[SNZ+21]

Yuchen Sun, Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen. A material point method for nonlinearly magnetized materials. ACM Trans. Graph., 2021.

[vW02]

Jarke J. van Wijk. Image based flow visualization. ACM Trans. Graph., 21(3):745–754, July 2002.

[ZP03]

Xiaoqiang Zheng and A. Pang. Hyperlic. In IEEE Visualization, 2003. VIS 2003., volume, 249–256. 2003.